

Chombo-Crunch and Vislt for carbon sequestration and in-transit data analysis using burst buffers

Andrey Ovsyannikov (NERSC),

Melissa Romanus (Rutgers U.), Brian Van Straalen (LBL), Gunther Weber (LBL), David Trebotich (LBL)

Outline

- Motivation
- Conventional I/O and alternatives
- Burst Buffer architecture
- Proposed approach: asynchronous workflow
- Chombo-Crunch example
- Results
- Conclusions

Motivation

Emerging exascale systems one has to deal with:

- Growing amount of data at an unprecedented rate
- Insufficient bandwidth of persistent storage media. Growing gap between computation and I/O rates
- Scientific workflows are getting more complex. Exchange of data between different workflow components is getting challenging

Need of alternatives to conventional post-processing approach

Different data analysis methods

	$In \ situ$	In Transit	Post			
			Processing			
Analysis	Within	Burst Buffer	Separate			
Execution	Simulation		Application			
Location						
Data Location	Within Simu-	Within Burst	On Parallel File			
	lation Memory	Buffer Flash	System			
	Space	Memory				
Data	YES: Can limit	YES: Can limit	NO: All data			
Reduction	output to only	data saved to disk	saved to disk for			
Possible?	analysis prod-	to only analysis	future use.			
	ucts.	products.				
Interactivity	NO: Analysis	LIMITED: Data	YES: User has			
	actions must	is not perma-	full control on			
	be pre-scripted	nently resident in	what to load			
	to run within	flash and can be	and when to			
	simulation.	removed to disk.	load data from			
			disk.			
Analysis	Fast running	Longer running	All possible			
Routines	analysis opera-	analysis opera-	analysis and			
Expected	tions, statistical	tions bounded	visualization			
	routines, image	by the time un-	routines includ-			
	rendering.	til drain to file	ing interactive			
		system. Statistics	exploration of			
		over simulation	the rendered			
		time.	dataset.			

Comparison of data analysis execution methods (Prabhat & Koziol, 2015)

Burst Buffer architecture

- Current configuration: 850TB on 144 BB nodes (288 SSDs)
- >1.5 PB total coming with Cori Phase 2

Proposed in-transit workflow

Workflow components:

- ☐ Chombo-Crunch (subsurface simulator)
- ☐ **Visit** (visualization and analytics)
- □ Encoder
- ☐ Checkpoint manager

Slurm implementation

Allocate BB capacity Stage in restart file

Run each component

Stage output file to PFS


```
#!/bin/bash
#SBATCH --nodes=1040
#SBATCH -- job-name=shale
#DW jobdw capacity=200TiB access mode=striped type=scratch
#DW stage in type=file source=/pfs/restart.hdf5 destination
     =$DW JOB STRIPED/restart.hdf5
### Load required modules
module load visit
ScratchDir="$SLURM SUBMIT DIR/ output.$SLURM JOBID"
BurstBufferDir="${DW JOB STRIPED}"
mkdir $ScratchDir
stripe large $ScratchDir
NumTimeSteps=2000
EncoderInt=120
RestartFileName="restart.hdf5"
ProgName="chombocrunch3d.Linux.64.CC.ftn.OPTHIGH.MPI.PETSC.
ex"
ProgArgs=chombocrunch.inputs
ProgArgs="$ProgArgs check file=${BurstBufferDir}check
     plot file=${BurstBufferDir}plot pfs path to checkpoint=
     ${ScratchDir}/check restart file=${BurstBufferDir}${
     RestartFileName} max step=$NumTimeSteps"
### Launch Chombo-Crunch
srun -N 1024 -n 32768 $ProgName $ProgArgs > log 2>&1 &
### Launch VisIt
visit -l srun -nn 16 -np 512 -cli -nowin -s VisIt.py &
### Launch Encoder
./encoder.sh -pnqpath $BurstBufferDir -endts $NumTimeSteps
     -i $EncoderInt &
wait
### Stage-out movie file from Burst Buffer
#DW stage out type=file source=$DW JOB STRIPED/movie.mp4
     destination=/pfs/movie.mp4
```


Chombo-Crunch

Simulates pore scale reactive transport processes associated with <u>carbon</u> <u>sequestration</u>

Applied to other subsurface science areas:

- Hydrofracturing
- Used fuel disposition (Hanford salt repository modeling)

Extended to engineering applications:

- Lithium ion battery electrodes
- Paper manufacturing (hpc4mfg)

I/O bandwidth study

Collective write to shared file using HDF5 library

Scaling study for 512 to 32768 MPI tasks for I/O. Number of compute nodes to BB nodes is fixed at 16:1.

Optimal bandwidth study at 2 scenarios.

In-transit visualization: Example 1

Reactive transport in dolomite:

Simulation performed on Cori Phase 1: 512 cores used by Chombo-Crunch, 64 cores by Vislt, 144 Burst Buffer nodes for I/O. Plot file size 8GB

Wall clock time history

With I/O to Burst Buffer

With I/O to Lustre PFS

In-transit visualization: Example 2 Nersc

Reactive transport in shale

Simulation performed on Cori Phase 1: 32768 cores used by Chombo-Crunch, 512 cores by Vislt, 144 Burst Buffer nodes for I/O. Plot file size 290GB

Compute time vs I/O time

- (a) High intensity I/O: write plot file every timestep, checkpointing every 10 timesteps
- (b) Medium intensity I/O: write plot file every 10 timesteps, checkpointing every 100 timesteps
- (c) Low intensity I/O: write plot file every 100 timesteps, checkpointing every 500 timesteps

Summary for 2 benchmarks

	Shale problem		Dolomite problem	
	I/O to Lustre	I/O to BB	I/O to Lustre	I/O to BB
# of timesteps	670)	2000	00
plot file size	288.8 GiB		7.46 GiB	
checkpoint size	180 GiB		6.12 GiB	
Chombo-Crunch compute time per ts	45.66 s		9.87 s	
averaged time of writing 1 checkpoint	136.8 s	38.4 s	47.28 s	1.47 s
averaged time of writing 1 plot file	58.4 s	3.3 s	14.45 s	$0.62 \mathrm{s}$
Percentage of Chombo-Crunch I/O: I/O pattern (a)	61%	13.5%	66%	13.8%
Percentage of Chombo-Crunch I/O, I/O pattern (b)	13.6%	1.5%	16.3%	0.77%
Percentage of Chombo-Crunch I/O, I/O pattern (c)	1.8%	0.2%	2.36%	0.126%

Conclusions

- In-transit workflow has been proposed and its performance has been assessed on a couple of application examples of Chombo-Crunch subsurface simulation code
- ☐ First results show definite I/O improvement and reduction of the overall end-to-end run time
- ☐ Utilizing NVRAM memory allows Chombo-Crunch to move to every timestep "postprocessing" while only changing roughly 20 lines of source code in Chombo
- ☐ Future work:
 - Dynamic component load balancing
 - Managing burst buffer capacity
 - Component signaling
 - Including additional components into workflow (e.g. pore graph extractor)

Burst Buffer Architecture Reality

BB nodes scattered throughout HSN fabric Glenn Lockwood 2 BB blades/chassis (12 nodes/cabinet) in Phase I

